Intra-Aortic Balloon Pumping

Description:
- The intra-aortic balloon is a volume displacement device that is inserted into the femoral artery either by cutdown or by introducer and positioned in the aorta 1 - 2 cm distal to the subclavian artery.
- With the patient’s EKG or arterial pressure wave as a signal, the pump is timed to inflate and deflate (usually with helium as the gas) in synchrony with the cardiac cycle, inflating during diastole, deflating in systole.

Effects of the Balloon:

1. **Inflated during Diastole**
 - Rapid inflation is set to occur at the beginning of diastole, when 75 - 90% of coronary artery perfusion occurs.
 - By raising root pressure early in diastole, balloon inflation increases coronary artery perfusion & myocardial O₂ supply.
 - Balloon inflation also increases perfusion pressure below the balloon, thus increasing forward flow, peripheral perfusion, and peripheral blood pressure.
 - The increase in early diastolic pressure is called “diastolic augmentation.”
 - Diastole begins with the closure of the aortic valve, which creates the dicrotic notch on the arterial wave. The dicrotic notch is the best marker for timing balloon inflation.

2. **Deflated during Systole**
 - Rapid deflation is set to occur at the end of diastole, during isovolumetric contraction (all cardiac valves are closed).
 - Deflation reduces end-diastolic pressure in the aortic root.
 - When the aortic valve opens at the beginning of systole, the left ventricle sees less pressure against which to eject.
 - Decreased end-diastolic pressure reduces ventricular afterload, heart work, and myocardial O₂ demand, resulting in improved:
 - Stroke volume
 - Cardiac output
 - Blood pressure
 - O₂ delivery to tissue.
 - The end of diastole and the beginning of systole is marked by the beginning of the upslope of the arterial wave.